

Photoredox decomposition of the adduct of methyltrioxorhenium(VII) and hexacyanoferrate(II) induced by metal-to-metal charge transfer excitation

Horst Kunkely, Arnd Vogler *

Institut für Anorganische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
Received 22 March 1995

Abstract

CH₃ReO₃ undergoes a charge-transfer interaction with Fe(CN)₆⁴⁻ in aqueous solution. It is assumed that the labile binuclear complex $[(Me)O_3Re(\mu-NC)Fe(CN)_5]^{4-}$ is formed. It is characterized by a metal-to-metal charge transfer absorption at $\lambda_{max} = 437$ nm. Upon Fe(II) to Re(VII) charge transfer excitation, a redox photolysis takes place yielding $[Fe(CN)_6]^{3-}$ as oxidation product with $\phi = 0.033$ at $\lambda_{irr} = 436$ nm.

Keywords: Rhenium; Iron; Electronic spectra; Photochemistry

1. Introduction

Photoredox reactions of binuclear ligand-bridged metal complexes induced by metal-to-metal charge transfer (MMCT) excitation have been studied extensively for nearly two decades [1]. The occurrence of low-energy MMCT transitions requires the presence of a reducing and an oxidizing metal center. It is surprising that oxidizing d⁰ metal ions have not yet been observed to participate in charge-transfer (CT) interactions with reducing metals in molecular systems, although a recent report [2] may represent a first example of this type. In order to observe optical MMCT with a d⁰ acceptor, we selected MeReO3, which was combined with [Fe(CN)₆]⁴⁻ as the donor. The choice of MeReO₃ was based on the observation that this compound can expand its coordination sphere [3,4] and might thus facilitate its interaction with [Fe(CN)₆]⁴⁻ via a bridging cyanide ligand. Moreover, the optical and photochemical properties of MeReO₃ [5] and binuclear complexes containing [Fe(CN)₆]⁴⁻ as reducing component [1] have been sufficiently characterized.

2. Results and discussion

Upon addition of K₄[Fe(CN)₆] in water to an aqueous solution of MeReO3, a red-brown colour developed immediately. This colour was caused by the appearance of a new absorption at $\lambda_{\text{max}} = 437 \text{ nm}$ (Fig. 1), which is attributed to the binuclear complex [(Me)O₃Re(μ -NC)Fe(CN)₅]⁴⁻. At fairly high equimolar concentrations ($> 10^{-2}$ M) of both components the new band followed the Lambert-Beer law with $\varepsilon = 240 \text{ M}^{-1}$ cm⁻¹. At this concentration the formation of the binuclear complex was apparently complete. However, it was not very stable and started to dissociate upon dilution. The deviation from the Lambert-Beer law at lower concentrations ($< 0.5 \times 10^{-2}$ M) was used to estimate the association constant ($K = 263 \text{ M}^{-1}$). Owing to the low stability, the extensive dissociation of the adduct prevented its purification and subsequent isolation. Upon addition of K₄[Ru(CN)₆], aqueous MeReO₃ remained colourless. Attempts to generate the binuclear complexes $[RO_3Re(\mu-NC)Fe(CN)_5]^{4-}$ with R =mesityl, Cp (η^5 -C₅H₅), Cp' (η^5 -MeC₅H₄) and Cp* $(\eta^5-\text{Me}_5\text{C}_5)$ were not successful. These experiments were hampered by the low solubility and hydrolysis of RReO3 in aqueous solution. In mixed solvents such as H₂O-acetone the appearance of new absorptions was

^{*} Corresponding author.

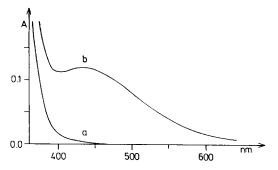


Fig. 1. Electronic absorption spectra of aqueous 4.0×10^{-3} M K_4 Fe(CN)₆ and 4.0×10^{-3} M MeReO₃, (a) as separate solutions and (b) as a mixture; 1 cm tandem cell.

not observed. The steric hindrance imposed by the ligands R may prevent the addition of $[Fe(CN)_{\epsilon}]^{4-}$.

In analogy with many other cyanide-bridged bi- or polynuclear complexes which contain a reducing and an oxidizing metal centre [1], the observed band at λ_{max} = 437 nm is assigned to an MMCT transition from Fe(II) to Re(VII). If Fe(II) is replaced by Ru(II), a long-wavelength MMCT absorption does not appear since $[Ru(CN)_6]^{4-}$ is much less reducing than $[Fe(CN)_6]^{4-}$ [1]. The occurrence of a low-energy MMCT transition for $[(Me)O_3Re(\mu-NC)Fe(CN)_5]^{4-}$ seems to be unique since the MMCT transition involves metal ions with a large difference in the dⁿ configuration (d⁶ for Fe and d⁰ for Re). The MMCT assignment is also supported by the photochemical behaviour of the binuclear complex. In this context it is interesting that the complexes $\{Cp_2M[\mu-NCMn(CO)_2Cp']_2\}$ have been reported to show suspicious colours (blue for M = Ti, red for Zrand orange for Hf) [2]. We assume that this colours are also caused by MMCT absorptions which are assigned to transitions from Mn (d⁶) to M (d⁰). The colour change suggests a red shift of the MMCT band in the series M = Hf, Zr and Ti, in agreement with an increase in the oxidation strength of M(IV) in this direction.

The binuclear complex $[MeO_3Re(\mu-NC)Fe(CN)_5]^{4-}$ in water was photosensitive. Upon light absorption by the long-wavelength band at $\lambda_{max} = 437$ nm ($\lambda_{irr} > 390$ nm), spectral variations were observed which clearly indicated the formation of $[Fe(CN)_6]^{3-}$ ($\lambda_{max} = 422$ nm, $\varepsilon = 1050$ and $\lambda = 400$ nm, $\varepsilon = 930$) [6]. The spectral changes included an isosbestic point at $\lambda = 453$ nm. At this wavelength the adduct and $[Fe(CN)_6]^{3-}$ have the same extinction coefficient $\varepsilon = 216$. The isosbestic point was preserved only at the beginning of the photolysis since $[Fe(CN)_6]^{3-}$ is also light sensitive at the

irradiating wavelength. $[Fe(CN)_6]^{3-}$ was formed with $\phi = 0.033$ at $\lambda_{irr} = 436$ nm.

Fe(II) to Re(VII) MMCT excitation of the binuclear ion generates the redox isomer [MeO₃Re^{VI}NC-Fe^{III}(CN)₅]⁴⁻, which decomposes to yield [Fe(CN)₆]³⁻ as a stable product. This photoreaction is certainly facilitated by the redox properties of MeReO₃, which was shown by cyclic voltammetry to undergo an irreversible reduction [7]. As in many other cases of MMCT excitation, the product formation depends on the kinetic lability of the reduced acceptor site [1,8].

Acknowledgements

Financial support for this research by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Professor Herrmann for samples of the complexes $RReO_3$ with R = methyl, mesityl, Cp, Cp' and Cp^* .

References

- [1] (a) A. Vogler, A.H. Osman and H. Kunkely, Coord. Chem. Rev., 64 (1985) 159; (b) A. Vogler, in M.A. Fox and M. Chanon (eds.), Photoinduced Electron Transfer, Elsevier, Amsterdam, 1988, Part C, p. 179.
- [2] P. Braunstein, D. Cauzzi, D. Kelly, M. Lanfranchi and A. Tiripicchio, *Inorg. Chem.*, 32 (1993) 3373.
- [3] Comprehensive reviews: (a) W.A. Herrmann, J. Organomet., 300 (1986) 111; (b) W.A. Herrman, E. Herdtweck, M. Flöel, J. Kulpe, U. Küsthardt and J. Okuda, Polyhedron, 6 (1987) 1165; (c) W.A. Herrmann, Angew. Chem., Int. Ed. Engl., 27 (1988) 1297; (d) W.A. Herrmann, J. Organomet. Chem., 382 (1990) 1; (e) W.A. Herrmann, F.E. Kühn, C.C. Romao. H. Tran Huy, M. Wang, R.W. Fischer, P. Kiprof and W. Scherer, Chem. Ber., 126 (1933) 45.
- [4] W.A. Herrmann, J.G. Kuchler, G. Weichselbaumer, E. Herdtweck and P. Kiprof, J. Organomet. Chem., 372 (1989) 351.
- [5] H. Kunkely, T. Türk, C. Teixeira, C. de Méric de Bellefon, W.A. Herrmann and A. Vogler, Organometallics, 10 (1991) 2090.
- [6] J.J. Alexander and H.B. Gray, J. Am. Chem. Soc., 90 (1986) 4260.
- [7] (a) W.A. Herrmann, P. Kiprof, K. Pypdal, J. Tremmel, R. BlomR. Alberto, J. Behm, R.W. Albach, H. Bock, B. Solouki, J. Mink, D. Lichtenberger and N.E. Gruhn, J. Am. Chem. Soc., 113 (1991) 6527; (b) R.W. Albach, Diploma Thesis, Technical University of Munich, 1989.
- [8] A. Vogler and H. Kunkely, in K. Kalyanasundaram and M. Grätzel (eds.), Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds, Kluwer, Dordrecht, 1993, p. 71.